Golden Ratio - Another Sighting
We'll be looking into a chain of circles all tangent to a given line and to the two immediate predecessors in the chain. The chain starts with two circles tangent to each other of radii a and b. For three circles, we have the following well known result, obtained yet in one of the sangaku:
Assuming the radii of the three circles are consecutively r, ρ, and R, the relation between the radii is expressed by
Many generations of amateur and professional mathematicians looked at this formula and saw the relation between the radii of three consecutive circles. Very recently, Giovanni Lucca has observed that the relation is actually the one that defines the Fibonacci sequence
Denoting the radii of the circles in the chain as 
And, with
we plainly have a recurrence
with
This is different from the Fibonacci sequence, for which
However, the solution for the recurrence is well known:
For both sequence
the golden ratio.
Let
be the coordinate on the given line of the center of
circle. Giovanni Lucca finds that
He shows that the series is convergent, with the limit
determined from
References
- Giovanni Lucca, Generalized Fibonacci Circle Chains, Forum Geometricorum Volume 10 (2010) 131–133.
