### Golden Ratio - Another Sighting

We'll be looking into a chain of circles all tangent to a given line and to the two immediate predecessors in the chain. The chain starts with two circles tangent to each other of radii a and b. For three circles, we have the following well known result, obtained yet in one of the sangaku:

Assuming the radii of the three circles are consecutively r, ρ, and R, the relation between the radii is expressed by

Many generations of amateur and professional mathematicians looked at this formula and saw the relation between the radii of three consecutive circles. Very recently, Giovanni Lucca has observed that the relation is actually the one that defines the Fibonacci sequence

Denoting the radii of the circles in the chain as

And, with we plainly have a recurrence

with This is different from the Fibonacci sequence, for which However, the solution for the recurrence is well known:

For both sequence the golden ratio.

Let be the coordinate on the given line of the center of circle. Giovanni Lucca finds that

He shows that the series is convergent, with the limit determined from

### References

- Giovanni Lucca,
__Generalized Fibonacci Circle Chains__,*Forum Geometricorum*Volume 10 (2010) 131–133.